NASA's solar probe starts closest-ever approach to Sun

      Source: Xinhua| 2018-08-12 18:44:10|Editor: mmm
      Video PlayerClose

      WASHINGTON, Aug. 12 (Xinhua) -- NASA's Parker Solar Probe, the fastest spacecraft in history, blasted off atop a Delta IV Heavy rocket in the U.S. state of Florida on Sunday, on a mission to study the Sun at closer range than any other spacecraft.

      The probe has started its journey to the Sun's fiery corona amidst brutal heat and radiation conditions.

      The rocket was launched from Space Launch Complex 37 at the Cape Canaveral Air Force Station in Florida at 3:31 a.m. EDT (0731 GMT), carrying the small car-sized probe toward the Sun with a whopping 55 times more energy than is required to reach Mars.

      It is humanity's first close visit to a star and will revolutionize our understanding of the Sun.

      Zooming through space in a highly elliptical orbit, the Parker Solar Probe will reach speeds of up to 430,000 miles (690,000 km) per hour, fast enough to get from Washington to Beijing in less than one minute.

      During its mission lifetime of under seven years, the probe will complete 24 orbits of the Sun and fly within 3.7 million miles (6 million km) of the Sun's surface at closest approach.

      CLOSING IN ON THE SUN

      As getting so close to the Sun requires slowing down, Parker will use the gravity of our neighbor planet, Venus: seven times.

      "Parker Solar Probe uses Venus to adjust its course and slow down in order to put the spacecraft on the best trajectory," said Andy Driesman, project manager for the mission at the Johns Hopkins Applied Physics Lab.

      In an orbit this close to the Sun, the real challenge is to keep the spacecraft from burning up.

      According to NASA, the heat shield is made of a 4.5-inch thick carbon composite foam material between two carbon fiber face sheets.

      While the Sun-facing side simmers at about 1,400 degrees Celsius, behind the shield the spacecraft will be 30 degrees Celsius.

      Also, the spacecraft is designed to autonomously keep itself safe and on track to the Sun as several sensors are attached to its body along the edge of the shadow from the heat shield.

      If any of these sensors detect sunlight, they alert the central computer and the spacecraft can correct its position to keep the sensors, and the rest of the instruments, protected, all happening without any human intervention, according to NASA.

      UNRAVELING CORONA'S SECRET

      The Parker Solar Probe is the first NASA mission to be named after a living individual, Eugene Parker.

      Born in 1927, Parker is a solar physicist who in 1958 first predicted the existence of the solar wind, the stream of charged particles and magnetic fields that flow continuously from the Sun, bathing Earth.

      The spacecraft's path through the corona will allow it to observe the acceleration of the solar wind that makes a critical transition from slower than the speed of sound to faster than it.

      The corona is also where the solar material is heated to millions of degrees and where the most extreme events on the Sun occur, such as solar flares and coronal mass ejections, accelerating particles to a fraction of the speed of light.

      These explosions create space weather events that can pummel Earth with high energy particles, endangering astronauts, interfering with GPS and communications satellites and, at their worst, disrupting our power grid.

      The Parker Solar Probe's instruments should reveal the mechanisms at work behind the acceleration of solar energetic particles, which can reach speeds more than half as fast as the speed of light as they rocket away from the Sun.

      Among them are the FIELDS suite that measures the electric and magnetic fields around the spacecraft and SWEAP that counts particles in the solar wind and measures their velocity, density and temperature.

      Three months later, the Parker Solar Probe will reach its first close approach of the Sun, and will send the data back in December.

      "By studying our star, we can learn not only more about the Sun," said Thomas Zurbuchen, the associate administrator for the Science Mission Directorate at NASA's headquarters. "We can also learn more about all the other stars throughout the galaxy, the universe and even life's beginnings."

      TOP STORIES
      EDITOR’S CHOICE
      MOST VIEWED
      EXPLORE XINHUANET
      010020070750000000000000011100001373852081
      主站蜘蛛池模板: 日本老妇人乱xxy| 精品一区二区三区在线视频| 欧美亚洲国产精品久久久久| 精品国产AV色欲果冻传媒| 女扒开尿口让男桶30分钟| 亚洲高清无在码在线电影不卡| 黄页网址大全免费观看12网站| 成人欧美一区二区三区的电影 | 99久久国产宗和精品1上映| 欧美大交乱xxxxxbbb| 国产午夜精品无码| 99久久国产免费中文无字幕| 护士又湿又紧我要进去了| 亚洲精品国产电影| 老鸭窝在线播放| 国产高跟黑色丝袜在线| 久久精品国产欧美日韩| 精品久久久久久无码人妻热| 国产小视频在线观看网站| 91香蕉福利一区二区三区| 快猫官方网站是多少| 亚洲熟妇av一区二区三区宅男| 色爱av综合网站| 国产粗话肉麻对白在线播放| 丰满老熟好大bbb| 欧美激情xxxx性bbbb| 免费看片A级毛片免费看| 苏玥马强百文择| 国产手机在线精品| 一二三区免费视频| 毛片a级毛片免费观看品善网| 国产69精品久久久久777| 国产超爽人人爽人人做| 国产精品高清久久久久久久| xxxxx免费视频| 日韩精品成人一区二区三区 | 日出水了特别黄的视频| 亚洲精品线在线观看| 网址大全在线免费观看| 国产精品亚洲成在人线| 中文字幕中文字幕在线|